Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(17): 9621-9636, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648422

RESUMEN

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.


Asunto(s)
Fusarium , Extractos Vegetales , Espectrometría de Masas en Tándem , Vitis , Vitis/química , Vitis/microbiología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Enfermedades de las Plantas/microbiología , Residuos/análisis
2.
J Agric Food Chem ; 71(13): 5075-5092, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951872

RESUMEN

Exposure to mycotoxins can pose a variety of adverse health effects to mammals. Despite dozens of mycotoxin decontamination strategies applied from pre- to postharvest stages, it is always challenging to guarantee a safe level of these natural toxic compounds in food and feedstuffs. In the context of the increased occurrence of drug-resistance strains of mycotoxin-producing fungi driven by the overuse of fungicides, the search for new natural-product-based solutions is a top priority. This review aims to shed a light on the promising potential of stilbenoids extracted from renewable agricultural wastes (e.g., grape canes and forestry byproducts) as antimycotoxin agents. Deeper insights into the mode of actions underlying the bioactivity of stilbenoid molecules against fungal pathogens, together with their roles in plant defense responses, are provided. Safety aspects of these natural compounds on humans and ecology are discussed. Perspectives on the development of stilbenoid-based formulations using encapsulation technology, which allows the bypassing of the limitations related to stilbenoids, particularly low aqueous solubility, are addressed. Optimistically, the knowledge gathered in the present review supports the use of currently underrated agricultural byproducts to produce stilbenoid-abundant extracts with a high efficiency in the mitigation of mycotoxins in food and feedstuffs.


Asunto(s)
Productos Biológicos , Fungicidas Industriales , Micotoxinas , Estilbenos , Animales , Humanos , Productos Biológicos/farmacología , Estilbenos/farmacología , Micotoxinas/análisis , Hongos , Contaminación de Alimentos , Mamíferos
3.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421241

RESUMEN

Invasive plants efficiently colonize non-native territories, suggesting a great production of bioactive metabolites which could be effective antibiofilm weapons. Our study aimed to look for original molecules able to inhibit bispecies biofilm formed by S. aureus and C. albicans. Extracts from five invasive macrophytes (Ludwigia peploides, Ludwigia grandiflora, Myriophyllum aquaticum, Lagarosiphon major and Egeria densa) were prepared and tested in vitro against 24 h old bispecies biofilms using a crystal violet staining (CVS) assay. The activities of the extracts reducing the biofilm total biomass by 50% or more were comparatively analyzed against each microbial species forming the biofilm by flow cytometry (FCM) and scanning electron microscopy. Extracts active against both species were fractionated. Obtained fractions were analyzed by UHPLC-MS/MS and evaluated by the CVS assay. Chemical and biological data were combined into a bioactivity-based molecular networking (BBMN) to identify active compounds. The aerial stem extract of L. grandiflora showed the highest antibiofilm activity (>50% inhibition at 50 µg∙mL−1). The biological, chemical and BBMN investigations of its fractions highlighted nine ions correlated with the antibiofilm activity. The most correlated compound, identified as betulinic acid (BA), inhibited bispecies biofilms regardless of the three tested couples of strains (ATCC strains: >40% inhibition, clinical isolates: ≈27% inhibition), confirming its antibiofilm interest.

4.
Compr Rev Food Sci Food Saf ; 21(2): 1161-1197, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092346

RESUMEN

Mycotoxins are metabolites produced by molds that contaminate food commodities, are harmful to both humans and animals, as well as cause economic losses. Many countries have set regulatory limits and strict thresholds to control the level of mycotoxins in food and feedstuffs. New technologies and strategies have been developed to inhibit toxigenic fungal invasion and to decontaminate mycotoxins. However, many of these strategies do not sufficiently detoxify mycotoxins and leave residual toxic by-products. This review focuses on the use of phenolic compounds obtained from botanical extracts as promising bioagents to inhibit fungal growth and/or to limit mycotoxin yields. The mechanism of these botanicals, legislation concerning their use, and their safety are also discussed. In addition, recent strategies to overcome stability and solubility constraints of phenolic compounds to be used in food and feed stuffs are also mentioned.


Asunto(s)
Contaminación de Alimentos , Micotoxinas , Animales , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Hongos , Micotoxinas/análisis
5.
J Sep Sci ; 43(9-10): 1967-1977, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32045088

RESUMEN

The marine microalga Tisochrysis lutea, a Haptophyta with a thin cell wall and currently used mainly in aquaculture is a potential source of several bioactive compounds of interest such as carotenoids. In the present study, the simultaneous extraction and purification of fucoxanthin, the main carotenoid from T. lutea, was optimized using pressurized fluid extraction followed by in-cell purification. An experimental design was employed to maximize carotenoids' extraction; the experimental factors chosen were: (i) percentage of ethanol/ethyl acetate (0-100 %), (ii) temperature (40-150°C), and (iii) number of static extraction cycles (1-3). The maximum carotenoids' recovery, mainly fucoxanthin, was obtained with pure ethyl acetate at 40°C using one extraction cycle, achieving values of 132.8 mg of carotenoids per gram of extract. Once the optimum extraction conditions were confirmed, in-cell purification strategies using different adsorbents were developed to obtain fucoxanthin-enriched extracts. Activated charcoal showed potential retention of chlorophylls allowing an effective purification of fucoxanthin in the obtained extracts. Chemical characterization of extracts was carried out by reversed-phase high-performance liquid chromatography with diode array detection. Therefore, a selective fractionation of high value compounds was achieved using the proposed green downstream platform based on the use of compressed fluids.


Asunto(s)
Microalgas/química , Xantófilas/aislamiento & purificación , Temperatura , Xantófilas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...